2 research outputs found

    Explainable Active Learning for Preference Elicitation

    Full text link
    Gaining insights into the preferences of new users and subsequently personalizing recommendations necessitate managing user interactions intelligently, namely, posing pertinent questions to elicit valuable information effectively. In this study, our focus is on a specific scenario of the cold-start problem, where the recommendation system lacks adequate user presence or access to other users' data is restricted, obstructing employing user profiling methods utilizing existing data in the system. We employ Active Learning (AL) to solve the addressed problem with the objective of maximizing information acquisition with minimal user effort. AL operates for selecting informative data from a large unlabeled set to inquire an oracle to label them and eventually updating a machine learning (ML) model. We operate AL in an integrated process of unsupervised, semi-supervised, and supervised ML within an explanatory preference elicitation process. It harvests user feedback (given for the system's explanations on the presented items) over informative samples to update an underlying ML model estimating user preferences. The designed user interaction facilitates personalizing the system by incorporating user feedback into the ML model and also enhances user trust by refining the system's explanations on recommendations. We implement the proposed preference elicitation methodology for food recommendation. We conducted human experiments to assess its efficacy in the short term and also experimented with several AL strategies over synthetic user profiles that we created for two food datasets, aiming for long-term performance analysis. The experimental results demonstrate the efficiency of the proposed preference elicitation with limited user-labeled data while also enhancing user trust through accurate explanations.Comment: Preprin

    Symbolic knowledge extraction for explainable nutritional recommenders

    Get PDF
    Background and objective:This paper focuses on nutritional recommendation systems (RS), i.e. AI-powered automatic systems providing users with suggestions about what to eat to pursue their weight/body shape goals. A trade-off among (potentially) conflictual requirements must be taken into account when designing these kinds of systems, there including: (i) adherence to experts’ prescriptions, (ii) adherence to users’ tastes and preferences, (iii) explainability of the whole recommendation process. Accordingly, in this paper we propose a novel approach to the engineering of nutritional RS, combining machine learning and symbolic knowledge extraction to profile users—hence harmonising the aforementioned requirements. MethodsOur contribution focuses on the data processing workflow. Stemming from neural networks (NN) trained to predict user preferences, we use CART Breiman et al.(1984) to extract symbolic rules in Prolog Körner et al.(2022) form, and we combine them with expert prescriptions brought in similar form. We can then query the resulting symbolic knowledge base via logic solvers, to draw explainable recommendations. ResultsExperiments are performed involving a publicly available dataset of 45,723 recipes, plus 12 synthetic datasets about as many imaginary users, and 6 experts’ prescriptions. Fully-connected 4-layered NN are trained on those datasets, reaching ∼86% test-set accuracy, on average. Extracted rules, in turn, have ∼80% fidelity w.r.t. those NN. The resulting recommendation system has a test-set precision of ∼74%. The symbolic approach makes it possible to devise how the system draws recommendations. ConclusionsThanks to our approach, intelligent agents may learn users’ preferences from data, convert them into symbolic form, and extend them with experts’ goal-directed prescriptions. The resulting recommendations are then simultaneously acceptable for the end user and adequate under a nutritional perspective, while the whole process of recommendation generation is made explainable.Interactive Intelligenc
    corecore